Syntheses and structures of mono-, di- and tetranuclear rhodium or iridium complexes of thiacalix[4]arene derivatives[†]

Kenji Hirata, Toshiaki Suzuki,‡ Ai Noya, Izuru Takei and Masanobu Hidai*

Received (in Cambridge, UK) 3rd March 2005, Accepted 27th May 2005 First published as an Advance Article on the web 15th June 2005 DOI: 10.1039/b502999f

The reactions of [Cp*MCl₂]₂ (Cp* = η^5 -C₅Me₅, M = Rh, Ir) with thiacalix[4]arene (TC4A(OH)₄) and tetramercaptothiacalix[4]arene (TC4A(SH)₄) gave the mononuclear complexes [(Cp*M){ η^3 -TC4A(OH)₂(O)₂}] and the dinuclear complexes [(Cp*M)₂{ η^3 : η^3 -TC4A(S)₄}] respectively, while the analogous reactions with dimercaptothiacalix[4]arene (TC4A(OH)₂(SH)₂) produced the tetranuclear complexes [(Cp*M)₂(Cp*MCl₂)₂-{ η^3 : η^3 : η^1 : η^1 -TC4A(O)₂(S)₂].

Sulfur donor ligands have attracted much attention in recent years because of their flexible coordination ability, leading to the formation of a variety of mono- and polynuclear metal-sulfur complexes.¹ Recent studies in our laboratory have focused on the pursuit of rational synthetic pathways towards metal-sulfur clusters of a desired framework.^{2,3} During the course of these studies, novel catalytic reactions have been developed by using a cubane-type Mo₃PdS₄ cluster⁴ or thiolate-bridged diruthenium complexes.⁵⁻⁷ On the other hand, the chemistry of metallocalixarenes have long received interest due to their unique structural features and chemical properties.8 Recently, sulfur-containing calix[4]arenes, such as thiacalix[4]arene 19,10 and tetramercaptothiacalix[4]arene 2,11 have been prepared and were found to form various polynuclear metal complexes. We previously obtained the dihydrido complexes $[{MH_2(PMe_2Ph)_3} {\eta^3} TC4A(OH)_2(O)_2$ from the reaction of 1 with *cis*- $[M(N_2)_2(PMe_2Ph)_4]$ (M = Mo, W).¹² Recently, we have reported the reaction of 1 with $[(\eta^5-C_5H_5)TiCl_3]$ in the presence of NEt₃, followed by the addition of cis-[Mo(N₂)₂(PMe₂Ph)₄] to afford the Ti-Mo hetero-bimetallic complex [Ti(µ2-C5H5)MoH(PMe2Ph)2-{TC4A(O)₄}], the X-ray analysis of which shows an unusual α -agostic μ_2 - η^5 : η^2 -coordination of the cyclopentadienyl ligand to the two metals.¹³ This demonstrates the usefulness of thiacalixarene and its derivatives as ligands for the synthesis of multimetallic complexes. We have now succeeded in the synthesis of a new thiacalix[4]arene, dimercaptothiacalix[4]arene 3. Here we report on the synthesis and structures of mono-, di- and tetranuclear rhodium or iridium complexes of thiacalix[4]arene derivatives 1, 2 and 3 (Fig. 1).

Fig. 1 Thiacalix[4]arene derivatives.

Dimercaptothiacalix[4]arene **3** was synthesized from **1**. Firstly, the two hydroxy groups in **1** were protected by the reaction of **1** with methyl iodide in the presence of potassium carbonate, in acetone, under reflux to give bis(methyl ether) **4** in 89% yield.¹⁴ Compound **4** was then transformed into **5** in 83% yield by reaction with *N*,*N*-dimethylthiocarbamoyl chloride (K₂CO₃, acetone, reflux). The thermal rearrangement of **5** to **6** was achieved in 96% yield by heating the solid at 260 °C *in vacuo*. The subsequent reduction of **6** by LiAlH₄ in dry THF gave rise to **7** in 45% yield. Finally, treatment of **7** with BBr₃ in CH₂Cl₂ resulted in the formation of **3** in 89% yield.

The reaction of $[Cp^*MCl_2]_2$ (M = Rh, Ir; $Cp^* = \eta^5 - C_5Me_5$) with 1 in the presence of K_2CO_3 in THF at room temperature gave the mononuclear complexes $[Cp*M{\eta^3-TC4A(OH)_2(O)_2}]$ (M = Rh (8a, 98%), Ir (8b, 97%)). The structures of 8a and 8b were characterized by ¹H NMR spectroscopy and the structure of 8b confirmed by X-ray diffraction.§ Complex 8b, obtained by recrystallization from CH2Cl2-hexane, contains two CH2Cl2 molecules, one each on the inside and outside of the thiacalix[4]arene moieties in cone conformations. Interestingly, the reaction of an excess of [Cp*MCl₂]₂ with 1 did not produce bimetallic complexes-probably due to the intramolecular hydrogen bonds observed in the structures of complexes 8. Actually, in the ¹H NMR spectra, a signal assigned to the two phenolic hydrogens in complexes 8 appeared at lower fields (8a: δ 10.98, **8b**: δ 10.57) to the equivalent hydrogens in 1 (δ 9.60). In contrast, treatment of TC4A(SH)₄, 2, even with one equiv. of [Cp*MCl₂]₂ gave the bimetallic complexes $[(Cp^*M)_2\{\eta^3:\eta^3-TC4A(S)_4\}]$ (M = Rh (9a, 61%), Ir (9b, 68%)) (Scheme 1), the structures of which were determined by X-ray diffraction.§ Complexes of type 9 have an approximately C_{2h} symmetry, the TC4A(S)₄ ligand adopting a 1,2-alternate conformation, coordinating to the two metals as a bis(dithiolate-thioether tridentate) ligand.

Surprisingly, TC4A(OH)₂(SH)₂, **3**, reacted with 2 equiv. of $[Cp*MCl_2]_2$ in the presence of NEt₃ to give the tetranuclear

Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan. E-mail: hidai@rs.noda.tus.ac.jp; Fax: +81 4 7123 9362; Tel: +81 4 7124 1501

[†] Electronic Supplementary Information (ESI) available: Experimental details, ¹H NMR spectroscopic data and elemental analyses for all the complexes. See http://dx.doi.org/10.1039/b502999f

[‡] Present address: RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama 351-0198, Japan.

Scheme 1 Syntheses of $[Cp^*M{\eta^3-TC4A(OH)_2(O)_2}] (M = Rh (8a), Ir (8b))$ and $[(Cp^*M)_2{\eta^3:\eta^3-TC4A(S)_4}] (M = Rh (9a), Ir (9b)).$

complexes $[(Cp^*M)_2(Cp^*MCl_2)_2\{\eta^3:\eta^3:\eta^1:\eta^1-TC4A(O)_2(S)_2\}]$ (M = Rh (10a, 70%), Ir (10b, 63%)). The structures of 10a and 10b were characterized by ¹H NMR spectroscopy and the

Fig. 2 ORTEP drawing of **10b** with the hydrogen atoms, methyl groups of the cyclopentadienyl ligands, *tert*-butyl groups and solvent molecules omitted for clarity. Thermal ellipsoids are shown at the 50% probability level. Selected bond lengths (Å): Ir(1)-S(1) = 2.321(5), Ir(1)-S(2) = 2.328(6), Ir(1)-O(1) = 2.10(1), Ir(2)-S(3) = 2.385(5).

structure of **10b** was revealed by X-ray analysis.¹⁵ The ORTEP drawing of **10b** is shown in Fig. 2.§ Complex **10b**, recrystallized from CH₂Cl₂–hexane, consists of two Cp*Ir fragments, two Cp*IrCl₂ fragments and four solvating CH₂Cl₂ molecules with the tetradeprotonated TC4A(O)₂(S)₂ ligand. This ligand adopts a cone conformation, containing no CH₂Cl₂ molecules. The two Cp*Ir fragments occupy *syn* positions with respect to the mean plane defined by the macrocycle, the TC4A(O)₂(S)₂ ligand coordinates to them as a bis(phenolate–thioether–thiolate tridentate) ligand and the two Cp*IrCl₂ molecules are bonded to the remaining two thioether sulfurs. Thus a molecule of **3** is incorporated into complexes **10** as a tetraanionic ligand.

Scheme 2 Syntheses of $(Cp^*M)_2(Cp^*MCl_2)_2\{\eta^3:\eta^3:\eta^1:\eta^1-TC4A(O)_2(S)_2\}$ (M = Rh (10a), Ir (10b)).

On the other hand, the reaction of 3 with [Cp*MCl₂]₂ without $TC4A(OH)_2(S)_2$] (M = Rh (11a, 77%), Ir (11b, 73%)). X-ray analyses showed that the double-deprotonated dimercaptothiacalixarene ligand, TC4A(OH)₂(S)₂, adopts a cone conformation and coordinates to the two metals as a bis(thiolate-thioether bidentate) ligand. The ¹H NMR spectra displayed a signal assigned to the two phenolic protons at δ 7.33 for **11a** and 6.67 for **11b**. Treatment of complexes 11 with 2 equiv. of NEt₃ followed by recrystallization from hexane gave $[(Cp^*M)_2 \{\eta^3: \eta^3 - TC4A(O)_2(S)_2\}]$ (M = Rh (12a, 98%), Ir (12b, 93%)). In the ¹H NMR spectra, the signal assigned to the two protons of the OH groups disappeared and the formation of NH₄Cl was observed. When complexes 12 were allowed to react further with one equiv. of [Cp*MCl₂]₂, complexes 10a and 10b were formed in 70% and 62% yield respectively (Scheme 2). These results indicate that complexes 12 have approximately C_{2v} symmetry and that the TC4A(O)₂(S)₂ ligand adopts a cone conformation, coordinating to the two metals as a bis(thiolate-thioether-phenolate tridentate) ligand.

In conclusion, a new thiacalix[4]arene 3 has now been synthesized which can bind four molecules of $[Cp*MCl_2]$ (M = Rh, Ir) to form tetranuclear complexes 10, while similar reactions with thiacalix[4]arenes 1 and 2 give mononuclear and dinuclear complexes 8 and 9 respectively. Detailed studies on the differences in reactivities of thiacalix[4]arenes 1, 2 and 3 towards various metal complexes are now in progress.

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, including the Open Research Centre Project.

Notes and references

§ Crystal data for 8b·2CH₂Cl₂: C₅₂H₆₅Cl₄IrO₄S₄, M = 1216.36, orthorhombic, space group *Pnma* (# 62), a = 12.2677(8), b = 23.102(2), c = 19.400(1) Å, V = 5498.1(6) Å³, $D_{calcd} = 1.469$ g cm⁻³, T = 293 K, Z = 4, $\mu(Mo-K\alpha) = 28.22$ cm⁻¹, structure solution by direct methods, refinement on F^2 , 12518 unique reflections ($R_{int} = 0.044$), R1 = 0.073, wR2 = 0.179, GOF = 1.14, CCDC 270131. Crystal data for 9a: $C_{60}H_{74}Rh_2S_8$, M = 1257.54, monoclinic, space group C2/m (# 12), a = 20.71(1), b = 12.942(6), c = 13.568(6) Å, $\beta = 99.764(6)^{\circ}, V = 3585(3)$ Å³, $D_{calcd} = 1.165$ g cm⁻³, T = 293 K, $Z = 1, \mu$ (Mo-K α) = 7.23 cm⁻¹, structure solution by direct methods, refinement on F^2 , 6581 unique reflections ($R_{int} = 0.043$), R1 = 0.072, wR2 = 0.237, GOF = 1.23, CCDC 270132. Crystal data for **9b**: $C_{60}H_{74}Ir_2S_8$, M = 1436.16, monoclinic, space group P-1 (# 2), a = 11.019(4), b = 12.333(5), c = 13.359(4) Å, $\alpha = 67.49(1)$, $\beta = 65.78(1)$, $\gamma = 81.55(2)^\circ$, V = 1529.4(9) Å³, $D_{calcd} =$ 1.559 g cm⁻³, T = 293 K, Z = 1, μ (Mo-K α) = 46.67 cm⁻¹, structure solution by direct methods, refinement on F^2 , 6581 unique reflections $(R_{\text{int}} = 0.043), R1 = 0.049, wR2 = 0.129, \text{GOF} = 1.10, \text{CCDC } 270129.$ Crystal data for $10b \cdot 4CH_2Cl_2$: $C_{84}H_{112}Cl_{12}Ir_4O_2S_6$, M = 2540.48, monoclinic, space group C2/c (# 15), a = 34.408(5), b = 12.624(2), c = 25.155(4) Å, $\beta = 110.396(6)^\circ$, V = 10241(3) Å³, $D_{calcd} = 1.648$ g cm⁻³, T = 293 K, Z = 4, μ (Mo-K α) = 56.71 cm⁻¹, structure solution by direct methods, refinement on F^2 , 4664 unique reflections ($R_{int} = 0.076$), R1 = 0.072, wR2 = 0.162, GOF = 1.12, CCDC 265752. See http://dx.doi.org/10.1039/b502999f for crystallographic data in CIF or other electronic format.

- 1 E. I. Stiefel and K. Matsumoto, *Transition Metal Sulfur Chemistry*, American Chemical Society, Washington DC, 1996.
- 2 M. Hidai, S. Kuwata and Y. Mizobe, Acc. Chem. Res., 2000, 33, 46; S. Kuwata and M. Hidai, Coord. Chem. Rev., 2001, 213, 211.
- 3 M. Hidai, in *Perspectives in Organometallic Chemistry*, ed. C. G. Screttas and B. R. Steele, Royal Society of Chemistry, Cambridge, Special Publication no. 287, 2003, pp. 62–73.
- 4 T. Murata, Y. Mizobe, H. Gao, Y. Ishii, T. Wakabayashi, F. Nakano, T. Tanase, S. Yano, M. Hidai, I. Echizene, H. Nanikawa and S. Motomura, J. Am. Chem. Soc., 1994, 116, 3389; T. Wakabayashi, Y. Ishii, T. Murata, Y. Mizobe and M. Hidai, Tetrahedron Lett., 1995, 36, 5585; T. Wakabayashi, Y. Ishii, K. Ishikawa and M. Hidai, Angew. Chem., Int. Ed. Engl., 1996, 35, 2123.
- 5 M. Hidai, Y. Ishii and S. Kuwata, in *Modern Coordination Chemistry: The Legacy of Joseph Chatt*, ed. G. J. Leigh and N. Winterton, Royal Society of Chemistry, Cambridge, 2002, pp. 208–216.
- 6 J.-P. Qü, D. Masui, Y. Ishii and M. Hidai, *Chem. Lett.*, 1998, 1003; Y. Nishibayashi, M. Yamanashi, I. Wakiji and M. Hidai, *Angew. Chem., Int. Ed.*, 2000, **39**, 2909.
- 7 Y. Nishibayashi, M. Yamanashi, I. Wakiji and M. Hidai, J. Am. Chem. Soc., 2000, **122**, 11019; Y. Nishibayashi, I. Wakiji, Y. Ishii, S. Uemura and M. Hidai, J. Am. Chem. Soc., 2001, **123**, 3393.
- 8 L. Mandolini and R. Ungaro, *Calixarenes in Action*, Imperial College Press, London, 2000; C. Weiser, C. B. Dieleman and D. Matt, *Coord. Chem. Rev.*, 1997, **195**, 93.
- 9 N. Iki, C. Kabuto, T. Fukushima, H. Kumagai, H. Takeya, S. Miyanari, T. Miyashi and S. Miyano, *Tetrahedron*, 2000, 56, 1437.
- N. Iki, N. Morohashi, C. Kabuto and S. Miyano, *Chem. Lett.*, 1999, 219;
 N. Morohashi, T. Hattori, K. Yokomakura, C. Kabuto and S. Miyano, *Tetrahedron Lett.*, 2002, 43, 7769;
 G. Mislin, E. Graf, M. W. Hosseini, A. Bilyk, A. K. Hall, J. M. Harrowfield, B. W. Skelton and A. H. White, *Chem. Commun.*, 1999, 373;
 A. Bilyk, A. K. Hall, J. M. Harrowfield, B. W. Skelton and A. H. White, *Chem. Commun.*, 1999, 373;
 A. Bilyk, A. K. Hall, J. M. Harrowfield, B. W. Skelton and A. H. White, *Eur. J. Inorg. Chem.*, 2000, 823;
 A. Bilyk, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, B. W. Skelton and A. H. White, *Aust. J. Chem.*, 2000, 53, 895;
 Z. Asfari, A. Bilyk, W. C. Dunlop, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, B. W. Skelton and A. H. White, *Angew. Chem., Int. Ed.*, 2001, 40, 721;
 A. Bilyk, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, B. W. Skelton and A. H. White, *Angew. Chem., Int. Ed.*, 2001, 40, 721;
 A. Bilyk, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, B. W. Skelton and A. H. White, *Inorg. Chem.*, 2001, 40, 672.
- P. Rao, M. W. Hosseini, A. D. Cian and J. Fischer, *Chem. Commun.*, 1999, 2169; H. Akdas, E. Graf, M. W. Hosseini, A. D. Cian, A. Bilyk, B. W. Skelton, G. A. Koutsantonis, I. Murray, J. M. Harrowfield and J. Fischer, *Chem. Commun.*, 2002, 1042.
- 12 S. Takemoto, K. Otsuka, T. Otsuka, H. Seino, Y. Mizobe and M. Hidai, *Chem. Lett.*, 2002, 6.
- 13 S. Takemoto, S. Tanaka, Y. Mizobe and M. Hidai, *Chem. Commun.*, 2004, 838.
- 14 V. Csokai, A. Grün, G. Parlagh and I. Bitter, *Tetrahedron Lett.*, 2002, 43, 7627.
- 15 The synthesis of tetrairidium and tetraruthenium complexes based upon calix[4]arene, in which each metal is coordinated by an aryl ring, have been reported: M. Staffilani, K. S. B. Hancock, J. W. Steed, K. T. Holman, J. L. Atwood, R. K. Juneja and R. S. Burkhalter, J. Am. Chem. Soc., 1997, 119, 6324.